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Calibration of costly computer codes

Notations

Let r(x) ∈ R be a physical quantity of interest:

I x ∈ X ⊂ Rd is a vector of control variables,

I z(x) = r(x) + ε(x) is the physical measurement.

Let yt(x) ∈ R be a computer code:

I x is aligned on the r input,

I t ∈ T ∈ Rp is a vector of code parameters (may have no
counterpart in r).

What is the value of t making the best agreement between r(x)
and yt(x) ?
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Calibration of costly computer codes

Illustration

The function yt(x) = (6x − 2)2 × sin (tx − 4) on [0, 1] for several values

of t ∈ [5, 15]. Red dots are the physical measurements z(xi).
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Calibration of costly computer codes

The statistical modelling

I n physical experiments:
I x = {x1, · · · , xn},
I z = {z(x1), · · · , z(xn)}.

I ∃θ ∈ T r(xi) = yθ(xi) (negligible model error),

I Recall z(xi ) = r(xi) + ε(xi),

I Hence, z(xi) = yθ(xi) + ε where ε
i .i .d∼ N (0, λ2).

Statistical calibration consists in estimating θ in this
regression model!
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Calibration of costly computer codes

Bayesian inference of θ

Bayesian inference : Π(θ|z) ∝ L(z|θ)Π(θ)

I Π(θ) is the prior distribution,

I L(z|θ) = 1√
2πλ

exp
(
− 1

2λ2
SS(θ)

)
,

where SS(θ) = ||z− yθ(x)||2.
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Calibration of costly computer codes

Bayesian inference of θ

The code yθ(x) is non-linear:

=⇒ no closed form for Π(θ|z),

=⇒ need for MCMC methods,

=⇒ need for hundreds of simulations yθi
(xi).

Issue : the code is costly =⇒ M <<∞ simulations are allocated!

A possible solution : replacing the code by a Gaussian process
emulator!
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Calibration of costly computer codes

The Gaussian process emulator (GPE)

Prior hypothesis:

ytj(xj) = y(xj, tj) ∼ Y = PG(mβ(.),ΣΨ(.)).

Design of numerical experiments:

DM := {(x1, t1), · · · , (xM, tM)} ⊂ X × T

=⇒

y(DM) := {y(x1, t1), · · · , y(xM, tM)}

GPE emulator:

YM := Y |y(DM) ∼ PG(µM
β (.),VM

Ψ ),

which gives a stochastic prediction of yt(x) over X × T .
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Calibration of costly computer codes

The approximated likelihood based on a GPE

It is given by the conditional likelihood LC(z|y(DM),θ, β̂, Ψ̂)

LC (z|θ, y(DM), β̂, Ψ̂) ∝ |VΨ̂+λ2In|−1/2 exp−1

2

[
z− µM

β̂
(x,θ)T)

(VΨ̂ + λ2In)−1(z− µM
β̂

(x,θ))
]
.

where (β̂, Ψ̂) = argmax
(β,Ψ)

LM(y(DN)|β,Ψ)
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Calibration of costly computer codes

Approximated Bayesian calibration of θ

I ΠC (θ|z,DM) ∝ LC (z|θ,DM)Π(θ),

I ΠC (θ|z,DM) is cheap to evaluate =⇒ MCMC methods OK!

I The larger DM, the closer LC (θ|z,DM) to L(θ|z)

I KL(ΠC (θ|z,DM)||Π(θ|z)) −→
M→∞

0

When M is small, KL(ΠC (θ|z,DM)||Π(θ|z)) may be high !
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Calibration of costly computer codes

Artificial example

Left: The target posterior distribution Π(θ|z)
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Calibration of costly computer codes

Toy example

Two maximin Latin Hypercube Design DM
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Calibration of costly computer codes

Toy example

The corresponding ΠC (θ|z,DM) according to DM
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Adaptive designs based on the EI criterion

Adaptive calibration

I Question: How choosing DM to reduce
KL(ΠC (θ|z,DM)||Π(θ|z)) ?

I An idea: reduce the difference |LC (θ|z,DM)− L(θ|z)| where
L(θ|z) is high,

I An equivalent idea : reduce the uncertainty of the GPE at
locations {(xi,θ)} where SS(θ) is low.

I A solution: DM is sequentially built thanks to the EI criterion
applied to SS(θ).

D1 −→ · · · −→ Dk
EI−→ Dk+1 −→ · · · −→ DM
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Adaptive designs based on the EI criterion

The step k

I Y k := Y |y(Dk) constructed from Dk,

I mk := min {SS(θ1), · · · , SS(θk−1), SS(θk)},

I Dk = {(xi,θj)}1≤i≤n,1≤j≤k is a grid.

How to choose the next input locations {(xi,θk+1)}1≤i≤n where
the code is run ?
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Adaptive designs based on the EI criterion

The EI criterion: from Dk to Dk+1

EI k(θ) = E
[(
mk − SSk(θ)

)
1SSk (θ)≤mk

|Y k
]
∈ [0,mk ],

Then,

I θk+1 = argmax
θ

EI k(θ),

I Dk+1 = Dk ∪ {(xi,θk+1)}1≤i≤n.

To construct DM, repeat the EI criterion for 1 ≤ k ≤ M !
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Adaptive designs based on the EI criterion

Design Dk
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Adaptive designs based on the EI criterion

Optimization of the EI criterion
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Adaptive designs based on the EI criterion

Design Dk+1
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Adaptive designs based on the EI criterion

Approximated calibration using DM
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Adaptive designs based on the EI criterion

Comments

I no closed-form for EI k(θ),

I Dk is a grid design,

I unsuitable when n is large,

I need of one at a time strategies:

I maximize the EI criterion =⇒ θk+1,

I pick up a single pair (x?,θk+1) where x? ∈ {x1, · · · , xn}.
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Adaptive designs based on the EI criterion

Two criteria for one at a time strategies

I First criterion to reduce the uncertainty of the GPE:

x? = max
xi

V(Y k(xi,θk+1))

I Second criterion to compromise with the calibration goal:

x? = max
xi

 V
(
Y k(xi,θk+1)

)
max

i=1,··· ,n
V
(
Y k(xi,θk+1)

) × V(µkβ(xi, T ))

max
i=1,··· ,n

V(µkβ(xi, T ))



24 / 27



Adaptive designs based on the EI criterion

Design comparison

Black dots are the initial design. Red stars are the new experiments selected

from the EI criterion.
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Adaptive designs based on the EI criterion

Robustness in terms of the KL divergence
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